These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Possible involvement of cathepsin L in processing of rat liver hexokinase to eliminate mitochondria-binding ability. Author: Okazaki H, Tani C, Ando M, Ishii K, Ishibashi S, Nishimura Y, Kato K. Journal: J Biochem; 1992 Sep; 112(3):409-13. PubMed ID: 1429531. Abstract: A previously found proteinase possibly involved in the modification of hexokinase to eliminate the mitochondria-binding ability without appreciable change in the catalytic activity (called hexokinase-processing enzyme hereafter), was purified by sequential chromatographies from rat liver and its properties were examined. The hexokinase-processing enzyme had carbohydrate moieties as evidenced by adsorption on immobilized concanavalin A, and had a molecular weight of about 23,000 as estimated by SDS-PAGE and gel filtration chromatography. Benzyloxycarbonyl-phenylalanyl-L-arginine-4-methylcoumaryl-7-amide (Z-Phe-Arg-MCA)-hydrolyzing activity was co-purified with this processing activity throughout the purification, while the hydrolyzing activity for benzyloxycarbonyl-L-arginyl-L-arginine-4-methylcoumaryl-7-amide (Z-Arg-Arg-MCA) was not. The processing activity, as well as Z-Phe-Arg-MCA hydrolyzing activity, was highly sensitive to cysteine proteinase inhibition, for example, by leupeptin and N-[N-3-(trans-carboxirane-2-carbonyl)-L-leucyl]agmatine (E-64). Furthermore, the enzyme preparation reacted with an antibody against cathepsin L purified from rat kidney. These results indicated that cathepsin L may be involved in the above-mentioned processing of hexokinase.[Abstract] [Full Text] [Related] [New Search]