These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stable expression of a cDNA encoding a human beta 1 --> 3galactosyltransferase responsible for lacto-series type 1 core chain synthesis in non-expressing cells: variation in the nature of cell surface antigens expressed.
    Author: Sherwood AL, Greene TG, Holmes EH.
    Journal: J Cell Biochem; 1992 Oct; 50(2):165-77. PubMed ID: 1429882.
    Abstract:
    Transient expression of a human colonic adenocarcinoma Colo 205 cell derived cDNA in cell lines which ordinarily express only neolacto-series glycolipids has resulted in the expression of a beta 1 --> 3galactosyltransferase gene responsible for synthesis of glycolipids based upon the lacto-series type 1 core chain. Calcium phosphate transfected cells were panned on anti-IgM coated plates after initial treatment with a combination of monoclonal antibodies specific for type 1 chain terminal structures (TE-3) and a very broadly specific antibody reactive with multiple type 1 chain derivatives (TE-2). Adherent cells after panning were capable of efficiently transferring Gal in beta 1 --> 3-linkage to the acceptor glycolipid Lc3. Using these reagents, clones of stably transfected human colonic adenocarcinoma HCT-15 cells were produced and isolated. Parental HCT-15 cells do not express type 1 chain based antigens. The nature of the type 1 chain based antigens produced in each of these clones was analyzed by solid phase antibody binding assays. Three types of behavior were observed. Formation of type 1 terminal structures that were either exclusively sialylated or fucosylated, or a mixture of sialylated and fucosylated determinants occurred. In contrast, no difference in type 2 antigen expression between any clone and the parental cells was observed. These data suggest that coordination of subsequent reactions capable of modifying type 1 chain structures is not the same in all clones. The relationship of these results to aspects of cellular regulation of carbohydrate biosynthesis is discussed.
    [Abstract] [Full Text] [Related] [New Search]