These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of short and long durations of insulin-induced maternal hypoglycemia upon fetal rat tissue growth and glucose utilization.
    Author: Lueder FL, Buroker CA, Kim SB, Flozak AS, Ogata ES.
    Journal: Pediatr Res; 1992 Oct; 32(4):436-40. PubMed ID: 1437397.
    Abstract:
    We studied the effects of short and long durations of insulin-induced maternal hypoglycemia upon in vivo glucose utilization of several fetal tissues in the rat. Osmotic minipumps filled with insulin were implanted in pregnant rats on d 15 or 18 of gestation (term 21.5 d), and radiolabeled 2-deoxyglucose was used to measure relative glucose utilization rates (rGU) of fetal liver, lung, muscle, kidney, heart, placenta, and brain on d 20 of gestation after 2 or 5 d of hypoglycemia. Maternal plasma glucose concentrations decreased within 24 h of pump placement and remained less than controls throughout gestation. Fetal plasma glucose and insulin concentrations on d 20 were equally reduced after 2 and 5 d of hypoglycemia. Both 2 and 5 d of hypoglycemia were associated with significant reductions in the rGU of fetal liver, lung, and muscle. Reductions in fetal kidney rGU also occurred after 2 and 5 d of hypoglycemia but to a smaller degree. rGU of fetal heart was reduced after 2 d of hypoglycemia, but was normal after 5 d of hypoglycemia. Both 2 and 5 d of hypoglycemia were associated with increased rGU of fetal brain. Five d, but not 2 d of hypoglycemia resulted in decreased fetal weight on d 20 of gestation. However, at term, newborn pups delivered of hypoglycemic mothers weighed significantly less than controls regardless of the timing of minipump placement. Liver, lung, and carcass of these growth-retarded pups weighed less than control tissues, whereas kidney, heart, and brain weights were not affected.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]