These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disruption of prosomes by some bivalent metal ions results in the loss of their multicatalytic proteinase activity and cancels the nuclease resistance of prosomal RNA. Author: Nothwang HG, Coux O, Bey F, Scherrer K. Journal: Biochem J; 1992 Nov 01; 287 ( Pt 3)(Pt 3):733-9. PubMed ID: 1445237. Abstract: Prosomes are ribonucleoprotein particles constituted by a variable set of about 20 proteins found associated with untranslated mRNA. In addition, they contain a small RNA, the presence of which has been an issue of controversy for a long time. The intact particles have a multicatalytic proteinase (MCP) activity and are very stable; we have never observed autodigestion of the particle by its intrinsic proteinase activity. Surprisingly it was found that Zn2+ and Cu2+ ions at concentrations of 0.1-1 mM disrupt the prosome particles isolated from HeLa cells and duck erythroblasts and abolish instantaneously its MCP activity, without altering the two-dimensional electrophoretic pattern of the constituent proteins. Fe2+, however, seems to induce autodegradation rather than dissociation of the prosome constituents. Most interestingly, protein or oligopeptide substrates protect the particle and its proteinase activity from disruption by Zn2+ or Cu2+. Nuclease-digestion assays reveal that the prosomal RNA, which is largely resistant in the intact particle, becomes digestible after dissociation of prosomes by Zn2+. These data give, for the first time, unambiguous proof of the presence of an RNA in the particle. Furthermore, they demonstrate a structure-function relationship between the complex and its enzyme activity, which seems to be based on the particle as an entity and not on the single constituent proteins.[Abstract] [Full Text] [Related] [New Search]