These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interaction of tetanus toxin with intact bovine adrenal chromaffin cells: binding of toxin and subsequent inhibition of catecholamine release. Author: Colville CA, Bansal MK, Phillips JH, van Heyningen S. Journal: Biochim Biophys Acta; 1992 Nov 17; 1137(3):264-73. PubMed ID: 1445928. Abstract: Tetanus toxin (about 1 nM) inhibits 70% of the nicotine-evoked release of catecholamines from intact adrenal medullary chromaffin cells after 20 h of incubation and 30% of the K(+)-evoked release. Inhibition of Ca(2+)-evoked release from detergent-permeabilized cells requires higher concentrations of toxin (about 1 microM) toxin, but is maximal after 12 min. Preincubation of the intact cells with ganglioside GT1 in the absence of toxin also inhibits evoked secretion. 125I-labelled toxin bound specifically to these cells; the binding capacity was greater at pH 6 (about 1 pmol toxin/mg cell protein) than at pH 7.4 (about 0.25 pmol). In both cases there were at least two binding components: one of high affinity (Kd about 1 nM) accounting for about 20% of total binding and one of lower affinity (Kd 10-20 nM). Preincubation of the cells with ganglioside increased the binding capacity, but did not affect the Kd of the lower affinity component. Similar observations could be made when binding was measured immunocytochemically. Extraction of gangliosides from chromaffin cells and overlay experiments with radiolabelled toxin showed that, as well as GM3, the major ganglioside component of chromaffin cell membranes, a ganglioside having the chromatographic mobility of GT1 was a major ligand for toxin.[Abstract] [Full Text] [Related] [New Search]