These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spinal glutamate receptor antagonists differentiate primary and secondary mechanical hyperalgesia caused by incision. Author: Pogatzki EM, Niemeier JS, Sorkin LS, Brennan TJ. Journal: Pain; 2003 Sep; 105(1-2):97-107. PubMed ID: 14499425. Abstract: Secondary mechanical hyperalgesia has been demonstrated in postoperative patients indicating that central sensitization occurs after surgery. However, the underlying mechanisms are unknown. Here, we studied the role of spinal N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate receptors for pain behaviors indicating secondary hyperalgesia caused by gastrocnemius incision in the rat. We further determined if Ca(2+) permeable AMPA/kainate receptors are important for secondary hyperalgesia after gastrocnemius incision and for pain behaviors indicating primary hyperalgesia and guarding behavior after plantar incision. Withdrawal thresholds (WTs) to punctate mechanical stimuli were assessed by applying calibrated monofilaments to the plantar hind paw before gastrocnemius incision. WTs were tested again 2 h after gastrocnemius incision and again after intrathecal (IT) injection of either dizocilpine maleate (MK-801), 2-amino-5-phosphonovaleric acid (AP5), 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo[f]quinoxaline-7-sulfonamide (NBQX), or Joro spider toxin (JSTX). The doses used were: MK-801 (vehicle, 15, 30, 40 nmol), AP5 (vehicle, 10, 30 nmol), NBQX (vehicle, 5, 10 nmol), and JSTX (vehicle, 2, 5, 9 nmol). In the same rats, WTs were tested on postoperative day 2 before and after the same drugs were injected again. In other rats, WTs to monofilaments and response frequencies to a non-punctate mechanical stimulus or guarding behaviors were determined before, 1 h after plantar incision was made, and assessed again after JSTX (9 nmol or vehicle) was administered IT. Secondary mechanical hyperalgesia after gastrocnemius incision was dose-dependently blocked by NBQX but was only marginally affected by AP5 or MK-801. Only secondary mechanical hyperalgesia was reversed by JSTX; primary mechanical hyperalgesia and guarding behavior were unchanged. These results indicate that spinal sensitization contributing to behaviors for secondary hyperalgesia after incision requires Ca(2+) permeable AMPA/kainate receptors. The data further demonstrate that behaviors for secondary mechanical hyperalgesia after incision can be inhibited without affecting behaviors for primary mechanical hyperalgesia and guarding. Mechanisms for central sensitization causing secondary hyperalgesia in postoperative patients may therefore be separated from spontaneous pain and hyperalgesia that arises adjacent to the area of the incision.[Abstract] [Full Text] [Related] [New Search]