These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Replication functions of new broad host range plasmids isolated from polluted soils. Author: Gstalder ME, Faelen M, Mine N, Top EM, Mergeay M, Couturier M. Journal: Res Microbiol; 2003 Sep; 154(7):499-509. PubMed ID: 14499936. Abstract: The nucleotide sequencing of replicons isolated from three new broad host range plasmids, pMOL98, pEMT8, and pEMT3, originating from polluted soils, showed a typical organization of iteron replicons replicating by the theta mode. In the pMOL98 replicon, the origin region and the rep gene were identified in complementation experiments. Sequence comparisons showed that the regions bearing these features are highly identical to regions in pIP02T and pSB102 and that the Rep proteins (but not the origin regions) of these three plasmids show some identity to the Rep proteins of the IncW group of plasmids. This suggests that pMOL98, pIPO2T, and pSB102 constitute a new Inc/Rep family, distantly related to the IncW group, but having an incompatibility phenotype different from the IncW phenotype. The pEMT8 replicon displayed an orf whose conceptually translated product is related to the Rep proteins of four plasmids, pSD20, pSW500, pMLb, and pALC1, not yet classified into any known incompatibility group. The vegetative origins of these plasmids were not similar, suggesting that the five plasmids could belong to a new family with similar Rep proteins but different incompatibility phenotypes. The pEMT3 replicon is clearly related to IncP replicons (sequence similarities and incompatibility phenotype), although sequence comparisons revealed some divergence with respect to the two well-documented subgroups IncPalpha and IncPbeta. This suggests that in these plasmids, despite the existence of a powerful system of centralized control over replication, maintenance, and transfer functions, plasticity and evolution of these functions are at work. Our analysis confirms the extreme genetic flexibility of plasmids and the absolute necessity of using multiple techniques (PCR, DNA sequencing, DNA chips, and databases) to analyze the role of broad host range plasmids in the capture, recombination and spread of genetic traits among bacteria.[Abstract] [Full Text] [Related] [New Search]