These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CYP17 mutation E305G causes isolated 17,20-lyase deficiency by selectively altering substrate binding.
    Author: Sherbet DP, Tiosano D, Kwist KM, Hochberg Z, Auchus RJ.
    Journal: J Biol Chem; 2003 Dec 05; 278(49):48563-9. PubMed ID: 14504283.
    Abstract:
    Cytochrome p450c17 (CYP17) converts the C21 steroids pregnenolone and progesterone to the C19 androgen precursors dehydroepiandrosterone (DHEA) and androstenedione, respectively, via sequential 17alpha-hydroxylase and 17,20-lyase reactions. Disabling mutations in CYP17 cause combined 17alpha-hydroxylase/17,20-lyase deficiency, but rare missense mutations cause isolated loss of 17,20-lyase activity by disrupting interactions of redox partner proteins with CYP17. We studied an adolescent male with clinical and biochemical features of isolated 17,20-lyase deficiency, including micropenis, hypospadias, and gynecomastia, who is homozygous for CYP17 mutation E305G, which lies in the active site. When expressed in HEK-293 cells or Saccharomyces cerevisiae, mutation E305G retains 17alpha-hydroxylase activities, converting pregnenolone and progesterone to 17alpha-hydroxysteroids. However, mutation E305G lacks 17,20-lyase activity for the conversion of 17alpha-hydroxypregnenolone to DHEA, which is the dominant pathway to C19 steroids catalyzed by human CYP17 (the delta5-steroid pathway). In contrast, mutation E305G exhibits 11-fold greater catalytic efficiency (kcat/Km) for the cleavage of 17alpha-hydroxyprogesterone to androstenedione compared with wild-type CYP17. We conclude that mutation E305G selectively impairs 17,20-lyase activity for DHEA synthesis despite an increased capacity to form androstenedione. Mutation E305G provides genetic evidence that androstenedione formation from 17alpha-hydroxyprogesterone via the minor delta4-steroid pathway alone is not sufficient for complete formation of the male phenotype in humans.
    [Abstract] [Full Text] [Related] [New Search]