These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: How inotropic drugs alter dynamic and static indices of cyclic myoplasmic [Ca2+] to contractility relationships in intact hearts.
    Author: Rhodes SS, Ropella KM, Camara AK, Chen Q, Riess ML, Stowe DF.
    Journal: J Cardiovasc Pharmacol; 2003 Oct; 42(4):539-53. PubMed ID: 14508241.
    Abstract:
    The authors examined effects of positive (dopamine and digoxin) and negative (nifedipine and lidocaine) inotropic interventions on the instantaneous cyclic relationship between myoplasmic [Ca2+] and simultaneously developed left ventricular pressure (LVP) in intact guinea pig hearts. Novel indices were developed to quantify this relationship based on (1) transient [Ca2+] and LVP signal morphology, ie, maxima and minima, peak derivatives, beat areas, durations, and ratios of indices of LVP to [Ca2+]; (2) temporal delay; and (3) LVP versus [Ca2+] loop morphology, ie, orientation, size, hysteresis, position, shape, and duration. These analyses were used to assess the cost of phasic [Ca2+] for contraction and relaxation over one beat after inotropic intervention. It was found that dopamine and digoxin increased contractile and relaxation responsiveness to phasic [Ca2+], cumulative Ca2+, and net Ca2+ flux. Unlike dopamine, digoxin did not decrease relaxation response time. Nifedipine and lidocaine decreased contractile and relaxation responsiveness to phasic [Ca2+], cumulative Ca2+, and net Ca2+ flux. Unlike lidocaine, nifedipine decreased net available Ca2+ and Ca2+ influx. Positive inotropic agents increased [Ca2+]-LVP loop area and hysteresis and resulted in a more vertically oriented loop. Nifedipine and lidocaine decreased these loop indices and lidocaine exhibited greater loop hysteresis than did nifedipine. These novel indices provide a quantitative assessment of myoplasmic [Ca2+] handling for cardiac contractile function.
    [Abstract] [Full Text] [Related] [New Search]