These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vasodilative effects of urocortin II via protein kinase A and a mitogen-activated protein kinase in rat thoracic aorta. Author: Kageyama K, Furukawa K, Miki I, Terui K, Motomura S, Suda T. Journal: J Cardiovasc Pharmacol; 2003 Oct; 42(4):561-5. PubMed ID: 14508243. Abstract: Four corticotropin-releasing factor (CRF)-related peptides have been found in mammals and are known as CRF, urocortin, urocortin II, and urocortin III (also known as stresscopin). The three urocortins have considerably higher affinities for CRF receptor type 2 (CRF R2) than CRF, and urocortin II and urocortin III are highly selective for CRF R2. In the present study, the authors examined the hypothesis that urocortin II or urocortin III, in addition to urocortin, produces vasodilation as a candidate for natural ligands of CRF R2beta in rat thoracic aorta. Involvement of protein kinases on urocortin-induced vasodilation was also explored. The vasodilative effects of urocortin II and urocortin III were more potent than that of CRF, but less potent than that of urocortin. Urocortin II-induced vasodilation was significantly attenuated by a CRF R2-selective antagonist, antisauvagine-30. Both SQ22536, an adenylate cyclase inhibitor, and Rp-8-Br-cAMPS, a protein kinase A (PKA) inhibitor, were found to attenuate the urocortin II-induced vasodilation. SB203580, a p38 mitogen-activated protein (MAP) kinase inhibitor, also inhibited the effects of urocortin and urocortin II on vasodilation. Thus, urocortins contribute to vasodilation via p38 MAP kinase as well as PKA pathways.[Abstract] [Full Text] [Related] [New Search]