These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temperature dependence of thermal conductivity of biological tissues.
    Author: Bhattacharya A, Mahajan RL.
    Journal: Physiol Meas; 2003 Aug; 24(3):769-83. PubMed ID: 14509313.
    Abstract:
    In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 degrees C < T < 55 degrees C showed the thermal conductivity to be a linear function of temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 degrees C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 degrees C. Below this temperature, in the range of 25 degrees C < T < 90 degrees C, the thermal conductivity, as for sheep collagen, varied linearly with temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.
    [Abstract] [Full Text] [Related] [New Search]