These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxidation of explosives by Fenton and photo-Fenton processes. Author: Liou MJ, Lu MC, Chen JN. Journal: Water Res; 2003 Jul; 37(13):3172-9. PubMed ID: 14509704. Abstract: In this study, the Fenton process was used to explore the possibility of treating explosives, namely 2,4,6-trinitrophenol (PA), ammonium picronitrate (AP), 2,4-dinitrotoluene (DNT), methyl-2,4,6-trinitrophenylnitramine (Tetryl) and 2,4,6-Trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The photo-Fenton process was also conducted to compare its oxidation efficiency with the Fenton process. The inhibition of hydroxyl radical and theory of crystal field stabilization energy were introduced in this study. Results show that oxidation efficiencies in Fenton system are in the following sequence: DNT > PA > AP > TNT > Tetryl > RDX > HMX. The degradation of the explosives obeys a pseudo-first-order behavior, and possible decomposing mechanisms are also discussed. For all explosives, the oxidation rates significantly increased with increasing the concentration of Fe(II), as well as illumination with UV light.[Abstract] [Full Text] [Related] [New Search]