These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different thermostability of skeletal muscle glyceraldehyde-3-phosphate dehydrogenase from hibernating and euthermic jerboa (Jaculus orientalis). Author: Iddar A, Campos LA, Sancho J, Serrano A, Soukri A. Journal: Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Oct; 35(10):891-6. PubMed ID: 14515205. Abstract: In previous study, we demonstrated that the specific activity of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) in skeletal muscle of induced hibernating jerboa (hibernating GAPDH) was 3 4 folds lower than that of the one in the skeletal muscle of the euthermic jerboa (euthermic GAPDH). A significant decrease in both GAPDH protein and GapC mRNA levels occurs when hibernating, but the purified hibernating GAPDH is less active than the euthermic GAPDH. To investigate the physico-chemical basis of this lower activity, the behaviour during thermal inactivation of skeletal muscle GAPDH from hibernating and euthermic tissues was examined by a variety of spectroscopic techniques, including fluorescence emission, circular dichroism and ultraviolet absorption. A clear resistance to thermal denaturation was observed in the hibernating GAPDH compared with the euthermic GAPDH. The different temperature of denaturation found in these proteins by both fluorimetry and circular dichroism indicates that there might exist conformational changes of GAPDH upon hibernation that could affect the stability of this enzyme.[Abstract] [Full Text] [Related] [New Search]