These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On-line biosensors for simultaneous determination of glucose, choline, and glutamate integrated with a microseparation system.
    Author: Shi G, Yamamoto K, Zhou T, Xu F, Kato T, Ji-ye J, Jin L.
    Journal: Electrophoresis; 2003 Sep; 24(18):3266-72. PubMed ID: 14518055.
    Abstract:
    An effective microseparation system integrated with ring-disc electrodes and two microfluidic devices was fabricated for in vivo determination using a microdialysis pump. The major interference of ascorbic acid (AA) was excluded by direct oxidation with ascorbate oxidase. Glucose, glutamate, and choline were successfully determined simultaneously through the biosensors modified with a bilayer of osmium-poly(4-vinylpyridine)gel-horseradish peroxidase (Os-gel-HRP)/glucose oxidase (GOD), glutamate oxidase (GlutaOD) or choline oxidase (ChOD). To stabilize the biosensors, 0.2% polyethylenimine (PEI) was mixed with the oxidases. The cathodic currents of glucose, glutamate, and choline biosensors started to increase after the standard solutions were injected into the microseparation system. The on-line biosensors show a wide calibration range (10(-7)-10(-5) mol/L) with a detection limit of 10(-8) mol/L at the working potential of -50 mV. The variations of glucose, glutamate, and choline were determined simultaneously in a free moving rat when we perfused the medial frontal cortex with 100 micro mol/L N-methyl-D-aspartate (NMDA) solution, which is the agonist of the NMDA receptor.
    [Abstract] [Full Text] [Related] [New Search]