These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Advances in the development of ribozymes and antisense oligodeoxynucleotides as antiviral agents for human papillomaviruses.
    Author: Alvarez-Salas LM, Benítez-Hess ML, DiPaolo JA.
    Journal: Antivir Ther; 2003 Aug; 8(4):265-78. PubMed ID: 14518695.
    Abstract:
    Urogenital human papillomavirus (HPV) infections are the most common viral sexually transmitted disease in women. On a worldwide basis cervical cancer is the second most prevalent cancer of women. Although HPV infection is not sufficient to induce cancer, the causal relation between high-risk HPV infection and cervical cancer is well established. Over 99% of cervical cancers are positive for high-risk HPV. Therefore, there is a need for newer approaches to treat HPV infection. Two novel approaches for inactivating gene expression involve ribozymes and oligonucleotides. Methods for identification of target genes involved in neoplastic transformation and tumour growth have been established, and these will lead to therapeutic approaches without any damage to normal cellular RNA molecules, which is often associated with conventional therapeutics. Ribozymes and oligonucleotides represent rational antiviral approaches for inhibiting the growth of cervical lesions and carcinomas by interfering with E6/E7 RNA production. The E6 and E7 genes of high-risk HPVs cooperate to immortalize primary epithelial cells and because they are found in cervical cancer are considered the hallmark of cervical cancer. The use and modification of ribozymes and antisense oligodeoxynucleotides can inhibit the growth of HPV-16 and HPV-18 immortalized cells, and tumour cells by eliminating E6/E7 transcript. Hammerhead and hairpin ribozymes have been widely studied because of their potential use for gene therapy and their place as therapeutic tools for cervical cancer is being evaluated. Although antiviral ribozymes and antisense molecules have been effective as in vitro or in vivo inhibitors of high-risk HPV-positive cells, none is currently in clinical trial. There are, however, a number of other antisense therapies in Phase I-III clinical trial for several oncogenes.
    [Abstract] [Full Text] [Related] [New Search]