These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Water and ion balance in rat thymocytes under apoptosis induced with dexamethasone or etoposide. Ion-osmotic model of cell volume decrease].
    Author: Vereninov AA, Volgareva EV, Matveev VV, Moshkov AV, Rozanov IuM, Shirokova AV, Iurinskaia VE.
    Journal: Tsitologiia; 2003; 45(5):500-9. PubMed ID: 14521058.
    Abstract:
    Cell ion and water balance was studied with respect to analysis of the osmotic model of apoptotic volume decrease (AVD) in rat thymocytes under dexamethasone (1 microM, 4-6 h) or etoposide (50 microM, 5 h) treatment. Intracellular water content was determined by measurement of cell buoyant density in continuous Percoll gradient, while intracellular potassium and sodium contents were determined by flame emission analysis. Apoptosis was verified by an increase in cell buoyant density, fluorescence of cells stained with Acridine orange and Ethidium bromide (flow cytometry), by changes in the cell cycle and the appearance of sub-diploid peak in the DNA histogram (flow cytometry), and by a decrease in cell size examined with light microscope. A separate fraction of dense cells with reduced size was found to appear after dexamethasone or etoposide treatment. This fraction was considered as apoptotic. An increase in buoyant density of apoptotic cells corresponded to a decrease in cell water content. In apoptotic cells vs. cells with normal buoyant density, the intracellular potassium content was lower, but sodium content was higher. The sum of potassium and sodium contents was lower in apoptotic cells. Taken into account the loss of anions, associated with the loss of cations, the bulk decrease in ions content has been sufficient to be accounted for cell volume decrease on the basis of the ion-osmotic model.
    [Abstract] [Full Text] [Related] [New Search]