These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The neuroprotective effect of a novel calmodulin antagonist, 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate, in transient forebrain ischemia. Author: Hashiguchi A, Kawano T, Yano S, Morioka M, Hamada J, Sato T, Shirasaki Y, Ushio Y, Fukunaga K. Journal: Neuroscience; 2003; 121(2):379-86. PubMed ID: 14521996. Abstract: A novel calmodulin (CaM) antagonist DY-9760e, (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate), with an apparent neuroprotective effect in vivo, potently inhibits CaM-dependent nitric oxide synthase in situ. In the present study, we determined whether DY-9760e inhibits nitric oxide (NO) production and protein nitration by peroxynitrite (ONOO(-)) formation in the hippocampal CA1 region of gerbils after transient forebrain ischemia. In freely moving gerbils, NO production after 10-minute forebrain ischemia was monitored consecutively with in vivo brain microdialysis. Pretreatment with DY-9760e (50 mg/kg i.p.) significantly decreased the increased levels of NO(x)(-) (NO metabolites, NO(2)(-) plus NO(3)(-)) immediately after, 24 h after cerebral ischemia-reperfusion to the control levels of sham-operated animals. Western blot and immunohistochemical analyses using an anti-nitrotyrosine antibody as a marker of ONOO(-) formation indicated a marked increase in nitrotyrosine immunoreactivity in the pyramidal neurons of the CA1 region 2 h after reperfusion, and DY-9760e significantly inhibited increased nitrotyrosine immunoreactivity. Coincident with the inhibition of the NO production and protein tyrosine nitration, pretreatment with DY-9760e rescued the delayed neuronal death in the hippocampal CA1 region. These results suggest that the inhibitory effects of DY-9760e on the NO-ONOO(-) pathway partly account for its neuroprotective effects in cerebral ischemia.[Abstract] [Full Text] [Related] [New Search]