These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasonication of chitosan and chitosan nanoparticles. Author: Tang ES, Huang M, Lim LY. Journal: Int J Pharm; 2003 Oct 20; 265(1-2):103-14. PubMed ID: 14522123. Abstract: The objective of this study was to evaluate the effects of ultrasonication on chitosan molecules and nanoparticles. Molecular weight (M(v)) of chitosan HCl (M(v) 146 kDa and degree of deacetylation (DD) 96%) decreased linearly with increasing duration and amplitude of ultrasonication. DD and FTIR absorption were unaffected. X-ray diffraction (XRD) analysis suggested greater chain alignment in the ultrasonicated chitosan samples. Chitosan nanoparticles had mean diameter of 382 nm, polydispersity of 0.53 and zeta potential of 47 mV. Ultrasonication administered at increasing duration or amplitude decreased the mean diameter and polydispersity of the nanoparticles. Zeta potential and FTIR absorbance were unaffected, while XRD suggested a greater disarray of chain alignment in the nanoparticle matrix. Under the transmission electron microscope (TEM), freshly prepared nanoparticles were dense spherical structures which became fragmented after ultrasonication for 10 min at amplitude of 80. Untreated nanoparticle formulation turned turbid upon storage for 3 weeks at ambient conditions due to substantial swelling of the nanoparticles. Ultrasonicated nanoparticle formulation remained clear on storage. Although the particles had also swelled, they were no longer spherical, assuming instead an irregular shape with branching arms. In conclusion, high-intensity ultrasonication induced considerable damage on the chitosan nanoparticles which could affect their function as drug carriers.[Abstract] [Full Text] [Related] [New Search]