These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein.
    Author: Krönke G, Bochkov VN, Huber J, Gruber F, Blüml S, Fürnkranz A, Kadl A, Binder BR, Leitinger N.
    Journal: J Biol Chem; 2003 Dec 19; 278(51):51006-14. PubMed ID: 14523007.
    Abstract:
    Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, protects against oxidative stress, and shows potent anti-inflammatory effects. Oxidized phospholipids, which are generated during inflammation and apoptosis, modulate the inflammatory response by inducing the expression of several genes including HO-1. Here we investigated the signaling pathways and transcriptional events involved in the induction of HO-1 gene expression by oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) in human umbilical vein endothelial cells. OxPAPC up-regulated HO-1 mRNA and protein in a time- and concentration-dependent manner, whereas pro-inflammatory agents like TNF-alpha and lipopolysaccharide did not significantly induce HO-1 expression in human umbilical vein endothelial cells. Signaling pathways involved in the OxPAPC-mediated HO-1 induction included protein kinases A and C, as well as the mitogen-activated protein kinases p38 and ERK. The cAMP-responsive element-binding protein (CREB) was phosphorylated via these pathways in response to OxPAPC treatment and expression of a dominant-negative mutant of CREB inhibited OxPAPC-induced activity of a human heme oxygenase-1 promoter-driven luciferase reporter construct. We identified a cAMP-responsive element and a Maf recognition element to be involved in the transcriptional activation of the HO-1 promoter by OxPAPC. In gel shift assays we observed binding of CREB to the cAMP-responsive element after OxPAPC treatment. Induction of HO-1 expression by lipid oxidation products via CREB may represent a feedback mechanism to limit inflammation and associated tissue damage.
    [Abstract] [Full Text] [Related] [New Search]