These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gastric ulcers reduce A-type potassium currents in rat gastric sensory ganglion neurons.
    Author: Dang K, Bielefeldt K, Gebhart GF.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G573-9. PubMed ID: 14525728.
    Abstract:
    Voltage-dependent potassium currents are important contributors to neuron excitability and thus also to hypersensitivity after tissue insult. We hypothesized that gastric ulcers would alter K(+) current properties in primary sensory neurons. The rat stomach was surgically exposed, and a retrograde tracer (1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine methanesulfonate) was injected into multiple sites in the stomach wall. Inflammation and ulcers were produced by 10 injections of 20% acetic acid (HAc) in the gastric wall. Saline (Sal) injections served as control. Nodose or T9-10 dorsal root ganglia (DRG) cells were harvested and cultured 7 days later to record whole cell K(+) currents. Gastric sensory neurons expressed transient and sustained outward currents. Gastric inflammation significantly decreased the A-type K(+) current density in DRG and nodose neurons (Sal vs. HAc-DRG: 82.9 +/- 7.9 vs. 46.5 +/- 6.1 pA/pF; nodose: 149.2 +/- 10.9 vs. 71.4 +/- 11.8 pA/pF), whereas the sustained current was not altered. In addition, there was a significant shift in the steady-state inactivation to more hyperpolarized potentials in nodose neurons (Sal vs. HAc: -76.3 +/- 1.0 vs. -83.6 +/- 2.2 mV) associated with an acceleration of inactivation kinetics. These data suggest that a reduction in K(+) currents contributes, in part, to increased neuron excitability that may lead to development of dyspeptic symptoms.
    [Abstract] [Full Text] [Related] [New Search]