These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Optimization of physical dose distributions with hadron beams: comparing photon IMRT with IMPT.
    Author: Oelfke U, Bortfeld T.
    Journal: Technol Cancer Res Treat; 2003 Oct; 2(5):401-12. PubMed ID: 14529305.
    Abstract:
    Intensity modulated radiotherapy with high enery photons (IMRT) and with charged particles (IMPT) refer to the most advanced development in conformal radiation therapy. Their general aim is to increase local tumor control rates while keeping the radiation induced complications below desired thresholds. IMRT is currently widely introduced in clinical practice. However, the more complicated IMPT is still under development. Especially, spot- scanning techniques integrated in rotating gantries that can deliver proton or light ion-beams to a radiation target from any direction will be available in the near future. We describe the basic concepts of intensity modulated particle therapy (IMPT). Starting from the potential advantages of hadron therapy inverse treatment planning strategies are discussed for various dose delivery techniques of IMPT. Of special interest are the techniques of distal edge tracking (DET) and 3D-scanning. After the introduction of these concepts a study of comparative inverse treatment planning is presented. The study aims to identify the potential advantages of achievable physical dose distributions with proton and carbon beams, if different dose delivery techniques are employed. Moreover, a comparison to standard photon IMRT is performed. The results of the study are summarized as: i) IMRT with photon beams is a strong competitor to intensity modulated radiotherapy with charged particles. The most obvious benefit observed for charged particles is the reduction of medium and low doses in organs at risk. ii) The 3D-scanning technique could not improve the dosimetric results achieved with DET, although 10-15 times more beam spots were employed for 3D-scanning than for DET. However, concerns may arise about the application of DET, if positioning errors of the patient or organ movements have to be accounted for. iii) Replacing protons with carbon ions leads to further improvements of the physical dose distributions. However, the additional degree of improvement due to carbon ions is modest. The main clinical potential of heavy ion beams is probably related to their radiobiological properties.
    [Abstract] [Full Text] [Related] [New Search]