These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Kerogen in aquifer material and its strong sorption for nonionic organic pollutants.
    Author: Ran Y, Xiao B, Huang W, Peng P, Liu D, Fu J, Sheng G.
    Journal: J Environ Qual; 2003; 32(5):1701-9. PubMed ID: 14535311.
    Abstract:
    Sorption of organic pollutants by subsurface materials has been found to not only correlate with the total organic carbon (TOC) content, but also depend on the types of soil and sediment organic matter (SOM). Characterization of geochemically heterogeneous SOM is key to elucidating sorption mechanisms and predicting pollutant transport in ground water systems. In this study, kerogen, a nonextractable organic material, was isolated with an acid demineralization procedure from a sandy aquifer material (Borden, Ontario, Canada) having a TOC content of approximately 0.021% (w/w). Petrographical examinations reveal that the kerogen has three major types of macerals including bituminite (Kerogen Type I and II), vitrinite (Type III), and fusinite (Type IV or charred kerogen). The solid-state 13C nuclear magnetic resonance (NMR) spectrum shows two dominant peaks, aliphatic and aromatic carbons, for the isolated material. Sorption isotherms measured using phenanthrene, naphthalene, 1,3,5-trichlorobenzene (TCB), and 1,2-dichlorobenzene (DCB) as sorbates showed that both the isolated kerogen and the original sand exhibited nonlinear sorption and that the phenanthrene and TCB isotherms measured for the kerogen material are more nonlinear than the respective isotherms for the original sand. The single-point organic carbon--normalized sorption capacity measured for the isolated kerogen can be several times greater than that measured for the original sand for a given sorbate. The study suggests that kerogen plays a major role in overall sorption isotherm nonlinearity and could yield higher-than-predicted sorption capacities for the subsurface material even though the content of this organic material is very low.
    [Abstract] [Full Text] [Related] [New Search]