These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exaggerated hepatotoxicity of acetaminophen in mice lacking tumor necrosis factor receptor-1. Potential role of inflammatory mediators. Author: Gardner CR, Laskin JD, Dambach DM, Chiu H, Durham SK, Zhou P, Bruno M, Gerecke DR, Gordon MK, Laskin DL. Journal: Toxicol Appl Pharmacol; 2003 Oct 15; 192(2):119-30. PubMed ID: 14550746. Abstract: Transgenic mice with a targeted disruption of the tumor necrosis factor receptor 1 (TNFR1) gene were used to analyze the role of TNF-alpha in pro- and anti-inflammatory mediator production and liver injury induced by acetaminophen. Treatment of wild-type mice with acetaminophen (300 mg/kg) resulted in centrilobular hepatic necrosis. This was correlated with expression of inducible nitric oxide synthase (NOS II) and nitrotyrosine staining of the liver. Expression of macrophage chemotactic protein-1 (MCP-1), KC/gro, interleukin-1beta (IL-1beta), matrix metalloproteinase-9 (MMP-9), and connective tissue growth factor (CTGF), inflammatory mediators known to participate in tissue repair, as well as the anti-inflammatory cytokine, interleukin-10 (IL-10), also increased in the liver following acetaminophen administration. TNFR1(-/-) mice were found to be significantly more sensitive to the hepatotoxic effects of acetaminophen than wild-type mice. This was correlated with more rapid and prolonged induction of NOS II in the liver and changes in the pattern of nitrotyrosine staining. Acetaminophen-induced expression of MCP-1, IL-1beta, CTGF, and MMP-9 mRNA was also delayed or reduced in TNFR1(-/-) mice relative to wild-type mice. In contrast, increases in IL-10 were more rapid and more pronounced. These data demonstrate that signaling through TNFR1 is important in inflammatory mediator production and toxicity induced by acetaminophen.[Abstract] [Full Text] [Related] [New Search]