These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1.
    Author: Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Swärd K.
    Journal: Circ Res; 2003 Oct 31; 93(9):839-47. PubMed ID: 14551243.
    Abstract:
    The reactivity of the vascular wall to endothelin-1 (ET-1) is influenced by cholesterol, which is of possible importance for the progression of atherosclerosis. To elucidate signaling steps affected, the cholesterol acceptor methyl-beta-cyclodextrin (mbetacd, 10 mmol/L) was used to manipulate membrane cholesterol and disrupt caveolae in intact rat arteries. In endothelium-denuded caudal artery, contractile responsiveness to 10 nmol/L ET-1 (mediated by the ETA receptor) was reduced by mbetacd and increased by cholesterol. Neither ligand binding nor colocalization of ETA and caveolin-1 was affected by mbetacd. Ca2+ inflow via store-operated channels after depletion of intracellular Ca2+ stores was reduced in mbetacd-treated caudal arteries, as shown by Mn2+ quench rate and intracellular [Ca2+] response. Expression of TRPC1, 3, and 6 was detected by reverse transcriptase-polymerase chain reaction, and colocalization of TRPC1 with caveolin-1 was reduced by mbetacd, as seen by immunofluorescence. Part of the contractile response to ET-1 was inhibited by Ni2+ (0.5 mmol/L) and by a TRPC1 blocking antibody. In the basilar artery, exhibiting less store-operated channel activity than the caudal artery, ET-1-induced contractions were insensitive to the TRPC1 blocking antibody and to mbetacd. Increased store-operated channel activity in basilar arteries after organ culture correlated with increased sensitivity of ET-1 contraction to mbetacd. These results suggest that cholesterol influences vascular reactivity to ET-1 by affecting the caveolar localization of TRPC1.
    [Abstract] [Full Text] [Related] [New Search]