These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of p38 MAPK decreases myocardial TNF-alpha expression and improves myocardial function and survival in endotoxemia. Author: Peng T, Lu X, Lei M, Moe GW, Feng Q. Journal: Cardiovasc Res; 2003 Oct 01; 59(4):893-900. PubMed ID: 14553829. Abstract: OBJECTIVES: The role of p38 mitogen-activated protein kinase (MAPK) activation in lipopolysaccharide (LPS)-induced myocardial dysfunction has not been clearly defined. Our aim was to investigate the contribution of p38 MAPK in myocardial tumor necrosis factor-alpha (TNF-alpha) expression, cardiac function and survival during acute endotoxemia in mice. METHODS: Acute endotoxemia was induced by LPS (10 mg/kg, i.p.) in mice. Two hours after LPS treatment, left ventricular (LV) function was assessed. Phosphorylation of p38 MAPK was measured by Western blotting. TNF-alpha mRNA and protein levels were determined by semi-quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS: LPS rapidly increased phosphorylation of p38 MAPK, followed by TNF-alpha mRNA expression and protein expression in the LV myocardium. Pre-treatment of the p38 MAPK inhibitor SB202190 (2 mg/kg, i.p.) decreased TNF-alpha mRNA and protein by 65 and 36%, respectively (P<0.05). Immunohistochemical staining confirmed that cardiomyocytes were the major source of TNF-alpha production in the myocardium and blocking p38 MAPK activation inhibited TNF-alpha expression in response to LPS. Pre-treatment of SB202190 or a TNF-alpha antagonist etanercept (2 mg/kg, i.p) significantly reversed LPS-induced LV depression (P<0.05). LPS (20 mg/kg, i.p.) induced 94% mortality in mice within 72 h and pre-treatment with SB202190 and etanercept decreased LPS-induced mortality to 65 and 40%, respectively (P<0.01). CONCLUSION: p38 MAPK activation represents an important mechanism leading to myocardial TNF-alpha production and cardiac dysfunction during acute endotoxemia in mice. Our data suggest that p38 MAPK is a potential therapeutic target of endotoxemia.[Abstract] [Full Text] [Related] [New Search]