These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alpha-pheromone-induced "shmooing" and gene regulation require white-opaque switching during Candida albicans mating. Author: Lockhart SR, Zhao R, Daniels KJ, Soll DR. Journal: Eukaryot Cell; 2003 Oct; 2(5):847-55. PubMed ID: 14555467. Abstract: A 14-mer alpha-pheromone peptide of Candida albicans was chemically synthesized and used to analyze the role of white-opaque switching in the mating process. The alpha-pheromone peptide blocked cell multiplication and induced "shmooing" in a/a cells expressing the opaque-phase phenotype but not in a/a cells expressing the white-phase phenotype. The alpha-pheromone peptide induced these effects at 25 degrees C but not at 37 degrees C. An analysis of mating-associated gene expression revealed several categories of gene regulation, including (i) MTL-homozygous-specific, pheromone stimulated, switching-independent (CAG1 and STE4); (ii) mating type-specific, pheromone-induced, switching-independent (STE2); and (iii) pheromone-induced, switching-dependent (FIG1, KAR4, and HWP1). An analysis of switching-regulated genes revealed an additional category of opaque-phase-specific genes that are downregulated by alpha-pheromone only in a/a cells (OP4, SAP1, and SAP3). These results demonstrate that alpha-pheromone causes shmooing, the initial step in the mating process, only in a/a cells expressing the opaque phenotype and only at temperatures below that in the human host. These results further demonstrate that although some mating-associated genes are stimulated by the alpha-pheromone peptide in both white- and opaque-phase cells, others are stimulated only in opaque-phase cells, revealing a category of gene regulation unique to C. albicans in which alpha-pheromone induction requires the white-opaque transition. These results demonstrate that in C. albicans, the mating process and associated gene regulation must be examined within the context of white-opaque switching.[Abstract] [Full Text] [Related] [New Search]