These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle.
    Author: Westad C, Westgaard RH, De Luca CJ.
    Journal: J Physiol; 2003 Oct 15; 552(Pt 2):645-56. PubMed ID: 14561844.
    Abstract:
    The activity pattern of low-threshold human trapezius motor units was examined in response to brief, voluntary increases in contraction amplitude ('EMG pulse') superimposed on a constant contraction at 4-7 % of the surface electromyographic (EMG) response at maximal voluntary contraction (4-7 % EMGmax). EMG pulses at 15-20 % EMGmax were superimposed every minute on contractions of 5, 10, or 30 min duration. A quadrifilar fine-wire electrode recorded single motor unit activity and a surface electrode recorded simultaneously the surface EMG signal. Low-threshold motor units recruited at the start of the contraction were observed to stop firing while motor units of higher recruitment threshold stayed active. Derecruitment of a motor unit coincided with the end of an EMG pulse. The lowest-threshold motor units showed only brief silent periods. Some motor units with recruitment threshold up to 5 % EMGmax higher than the constant contraction level were recruited during an EMG pulse and kept firing throughout the contraction. Following an EMG pulse, there was a marked reduction in motor unit firing rates upon return of the surface EMG signal to the constant contraction level, outlasting the EMG pulse by 4 s on average. The reduction in firing rates may serve as a trigger to induce derecruitment. We speculate that the silent periods following derecruitment may be due to deactivation of non-inactivating inward current ('plateau potentials'). The firing behaviour of trapezius motor units in these experiments may thus illustrate a mechanism and a control strategy to reduce fatigue of motor units with sustained activity patterns.
    [Abstract] [Full Text] [Related] [New Search]