These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of the liver in the chicken embryo. I. Hepatic cords and sinusoids.
    Author: Wong GK, Cavey MJ.
    Journal: Anat Rec; 1992 Dec; 234(4):555-67. PubMed ID: 1456458.
    Abstract:
    Hemopoiesis in the liver of the chicken embryo begins on day 7 of incubation (Hamburger and Hamilton Stage 30) and peaks on day 14 (Stage 40). During this time frame, the differentiation of hepatic cells was examined by light microscopy, transmission and scanning electron microscopy, and morphometry. The avian liver is a closely packed mass of dendriform cords and discontinuous sinusoids. Hepatocytes are pyramidal in shape, and they ring the bile canaliculi which run through the centers of the cords. Semithin sections, made possible by infiltration and embedding in glycol methacrylate, were stained with hematoxylin and eosin to assess the general architecture of the organ and the lipid content of the hepatocytes and by the periodic acid-Schiff reaction and hematoxylin to visualize the cytoplasmic stores of glycogen. The number of hepatocytes with demonstrable glycogen fluctuates erratically in early hemopoiesis, and the proportion of glycogen-containing cells progressively increases as hemopoiesis climbs to a peak. Most differentiating hepatocytes are devoid of lipid droplets until Stages 39 and 40. From Stage 30 to 35, hepatocyte volume falls to its lowest value. Subsequently (Stages 36 to 40), cell volume increases and hepatocytes achieve a relatively uniform size. Ultrastructural changes in the differentiating hepatocytes, including alterations to the mitochondria, endoplasmic reticulum, and Golgi apparatus, are documented. These morphological and morphometric findings on the prehepatocyte population and hepatic vasculature cover 2 of the 3 elements deemed critical to hepatic hemopoiesis in many vertebrates.
    [Abstract] [Full Text] [Related] [New Search]