These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioactivation of clozapine by murine cardiac tissue in vivo and in vitro. Author: Williams DP, O'Donnell CJ, Maggs JL, Leeder JS, Uetrecht J, Pirmohamed M, Park BK. Journal: Chem Res Toxicol; 2003 Oct; 16(10):1359-64. PubMed ID: 14565776. Abstract: Clozapine, an atypical neuroleptic, undergoes bioactivation to a chemically reactive nitrenium ion. This has been implicated in the pathogenesis of clozapine-induced agranulocytosis. Clozapine also causes myocarditis and cardiomyopathy, the mechanisms of which are unknown. To investigate this, we have evaluated whether clozapine undergoes bioactivation by murine cardiac tissue, in comparison to hepatic tissue. Mice were administered clozapine (5 and 50 mg/kg i.p.), and the extent of covalent binding was assessed by Western blotting. There was an increase in irreversible binding of clozapine to several proteins, ranging in mass from 30 to 250 kDa in both hepatic and cardiac tissue. Bioactivation by hepatic and cardiac microsomes was assessed by LC/MS using glutathione to trap the intermediate. Metabolism of radiolabeled clozapine to a glutathionyl conjugate by liver and cardiac microsomes was 30.5 +/- 3.3 and 3.6 +/- 0.3% of the initial incubation concentration, respectively. Ketoconazole (20 muM), a P450 inhibitor, significantly reduced binding in both hepatic and cardiac microsomes to 6.2 +/- 0.2 and 0.5 +/- 0.06%, respectively. These data indicate that clozapine undergoes bioactivation in the heart to a chemically reactive nitrenium metabolite that may be important in the pathogenesis of myocarditis and cardiomyopathy observed in man.[Abstract] [Full Text] [Related] [New Search]