These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) mediates release of l-3,4-dihydroxyphenylalanine (l-DOPA) and inhibition of l-DOPA decarboxylase in the rat striatum: a microdialysis study.
    Author: Foster SB, Wrona MZ, Han J, Dryhurst G.
    Journal: Chem Res Toxicol; 2003 Oct; 16(10):1372-84. PubMed ID: 14565778.
    Abstract:
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly peroxynitrite, have been implicated as key participants in the dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium (MPP(+)). However, on the basis of available information, it is not clear whether the MPP(+)-induced overproduction of ROS and RNS occurs in the intraneuronal and/or extracellular compartment. Early steps in the neurotoxic mechanism evoked by MPP(+) include a profound dopaminergic energy impairment, which mediates a massive release of dopamine (DA), glutathione (GSH), and cysteine (CySH). In the event that MPP(+) mediates extracellular generation of ROS (such as superoxide and/or hydroxyl radicals) and/or peroxynitrite, released DA, GSH, and CySH should be oxidized forming thioethers of DA and disulfides. Using microdialysis experiments in which MPP(+) was perfused into the striatum of awake rats, the present study was unable to detect the presence of such biomarkers of extracellular ROS and/or RNS generation. However, MPP(+) induced a transient, concentration-dependent rise of extracellular l-3,4-dihydroxyphenylalanine (l-DOPA), identified on the basis of dialysate analysis using several HPLC methods and its conversion to DA by purified l-DOPA decarboxylase (DDC). Methamphetamine (30 mg/kg, i.p.) similarly caused a significant but transient rise of l-DOPA in the rat striatum. Antioxidants such as salicylate and mannitol had no effect on the MPP(+)-mediated elevation of extracellular l-DOPA, suggesting that it is not formed by nonenzymatic hydroxylation of l-tyrosine by ROS or RNS. Rather, in vivo, but not in vitro, MPP(+) caused rapid inhibition of DDC, which appears to result in intraneuronal accumulation and subsequent release of l-DOPA. Because l-DOPA can mediate l-glutamate release, as well as be an excitotoxin, the possibility is raised that l-DOPA may play a role in the dopaminergic neurotoxicity of MPP(+).
    [Abstract] [Full Text] [Related] [New Search]