These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sensitization of neuronal A2A adenosine receptors after persistent D2 dopamine receptor activation. Author: Vortherms TA, Watts VJ. Journal: J Pharmacol Exp Ther; 2004 Jan; 308(1):221-7. PubMed ID: 14566008. Abstract: Acute activation of Galpha(i/o)-coupled D2 dopamine receptors inhibits A2A adenosine receptor stimulation of adenylate cyclase. This antagonistic interaction between D2 dopamine and A2A adenosine receptors has been well documented; however, the effects of persistent activation of D2 dopamine receptors on subsequent A2A adenosine receptor signaling have not been explored. The present study investigated the effects of short-term (3-h) and long-term (18-h) activation of D2L dopamine receptors on subsequent A2A adenosine receptor stimulation of adenylate cyclase in CAD-D2L and NS20Y-D2L neuroblastoma cells. Short- and long-term activation of D2L dopamine receptors markedly increased 5'-N-methylcarboxamidoadenosine (MECA)-stimulated cyclic AMP accumulation 1.4-fold and 1.7-fold, respectively. D2L receptor-induced sensitization of A2A-stimulated cyclic AMP accumulation was blocked by the D2 antagonist spiperone and pertussis toxin pretreatment. In addition, persistent activation of A2A adenosine receptors resulted in 50% desensitization of subsequent MECA-stimulated cyclic AMP accumulation; however, MECA-induced desensitization of A2A adenosine receptors did not prevent completely quinpirole-induced sensitization of adenylate cyclase. These studies revealed a novel mode of regulation between D2L dopamine and A2A adenosine receptors and suggest a cooperative interaction in the regulation of cyclic AMP signaling.[Abstract] [Full Text] [Related] [New Search]