These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Zinc partitions insulin-like growth factors (IGFs) from soluble IGF binding protein (IGFBP)-5 to the cell surface receptors of BC3H-1 muscle cells. Author: McCusker RH, Novakofski J. Journal: J Cell Physiol; 2003 Dec; 197(3):388-99. PubMed ID: 14566968. Abstract: Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.[Abstract] [Full Text] [Related] [New Search]