These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The 5-HT(6) receptor antagonist SB-271046 reverses scopolamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats.
    Author: Foley AG, Murphy KJ, Hirst WD, Gallagher HC, Hagan JJ, Upton N, Walsh FS, Regan CM.
    Journal: Neuropsychopharmacology; 2004 Jan; 29(1):93-100. PubMed ID: 14571256.
    Abstract:
    The highly potent and selective 5-HT(6) receptor antagonist SB-271046 [5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide] has previously been demonstrated to improve retention significantly in a spatial water maze paradigm in adult rats. However, SB-271046 did not have any effect on task acquisition. As these apparently contradictory findings may be reconciled by a prime influence of SB-271046 on memory consolidation, the ability of this compound to reverse the discrete temporal action of a cholinergic antagonist in the 6-h period following passive avoidance training was investigated. SB-271046, given orally, by gavage, 30 min prior to training Wistar rats in a step-through, light-dark passive avoidance task, was found to reverse significantly the amnesia produced by administering scopolamine (0.8 mg/kg, intraperitoneal) in the 6-h post-training period. The effect was dose-dependent over a range of 3-20 mg/kg. Further, we investigated the cognition-enhancing effects of chronic SB-271046 administration (10 or 20 mg/kg/day; 40 days) on the acquisition and consolidation of a water maze spatial learning task in a population of 20-month-old Wistar rats with age-related learning deficits. Drug treatment progressively and significantly decreased platform swim angle and escape latencies over the five sequential trials on four consecutive daily sessions compared to vehicle-treated controls. SB-271046 also improved task recall as measured by significant increases in the searching of the target quadrant on post-training days 1 and 3, when the animals would have been substantially drug-free. This significant improvement of task recall suggests SB-271046, in addition to inducing symptomatic cognition-enhancing actions, also attenuates age-related decline in neural function.
    [Abstract] [Full Text] [Related] [New Search]