These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Shallow layer simulation of heavy gas released on a slope in a calm ambient. Part I. Continuous releases.
    Author: Hankin RK.
    Journal: J Hazard Mater; 2003 Oct 31; 103(3):205-15. PubMed ID: 14573340.
    Abstract:
    Although much research considers heavy gas dispersion over flat ground, less is known about the physics of dense gas dispersion on a slope. Here, the appropriateness of shallow layer models for the simple case of releases over a slope in a calm ambient is assessed. This two-part paper assesses the value of shallow layer modelling using the established shallow layer model TWODEE [J. Hazard. Mater. 66 (3) (1999) 211; J. Hazard. Mater. 66 (3) (1999) 227; J. Hazard. Mater. 66 (3) (1999) 239] and the experimental results of Schatzmann et al. [M. Schatzmann, K. Marotzke, J. Donat, Research on continuous and instantaneous heavy gas clouds, contribution of sub-project EV 4T-0021-D to the final report of the joint CEC project, Technical Report, Meteorological Institute, University of Hamburg, February 1991]. Part I considers continuous releases, and part II considers instantaneous releases; both use the same model with the same entrainment coefficients. For continuous releases, cloud arrival times are generally well predicted, and cloud concentrations are generally correct to within a factor of two. Shallow layer models thus appear to be capable of physically accurate simulation of continuous releases over a slope in a calm ambient.
    [Abstract] [Full Text] [Related] [New Search]