These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction of synthetic glycophospholipids with phospholipid bilayer membranes.
    Author: Park YS, Huang L.
    Journal: Biochim Biophys Acta; 1992 Dec 09; 1112(2):251-8. PubMed ID: 1457456.
    Abstract:
    A series of glycophospholipids synthesized by coupling mono-, di-, or tri-saccharides to dioleoylphosphatidylethanolamine (DOPE) by reductive amination was used to investigate the interaction of glycophospholipids with phospholipid bilayer membranes. These synthetic glycophospholipids functioned as a stabilizer for the formation of DOPE bilayer vesicles. The minimal mol% of glycophospholipid needed to stabilize the DOPE vesicles were as follows: 8% N-neuraminlactosyl-DOPE (NANL-DOPE), 20% N-maltotriosyl-DOPE (MAT-DOPE), 30% N-lactosyl-DOPE (Lac-DOPE), and 42% N-galactosyl-DOPE (Gal-DOPE). The estimated hydration number of glycophospholipid in reverse micelles was 87, 73, 46, and 14 for NANL-DOPE, MAT-DOPE, Lac-DOPE, and Gal-DOPE, respectively. Thus, the hydration intensity of the glycophospholipid was directly related to the ability to stabilize the DOPE bilayer phase for vesicle formation. Glycophospholipids also reduced the transition temperature from gel to liquid-crystalline phase (Tm) of dipalmitoylphosphatidylcholine (DPPC) bilayers. Interestingly, incorporation of NANL-DOPE induced a decrease of membrane fluidity of DPPC bilayers in the gel phase while other glycophospholipids had no effect. Also, low level of NANL-DOPE but not other glycophospholipids increased the transition temperature (TH) from liquid-crystalline to hexagonal phase of dielaidoylphosphatidylethanolamine bilayers. These results showed that NANL-DOPE with a highly hydratable headgroup which provides a strong stabilization activity for the L alpha phase of phospholipid membranes, may also be involved in specific interactions with neighboring phospholipids via its saccharide moiety.
    [Abstract] [Full Text] [Related] [New Search]