These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 5-HT induces duodenal mucosal bicarbonate secretion via cAMP- and Ca2+-dependent signaling pathways and 5-HT4 receptors in mice.
    Author: Tuo BG, Sellers Z, Paulus P, Barrett KE, Isenberg JI.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2004 Mar; 286(3):G444-51. PubMed ID: 14576083.
    Abstract:
    In previous studies, we have found that 5-hydroxytryptamine (5-HT) is a potent stimulant of duodenal mucosal bicarbonate secretion (DMBS) in mice. The aim of the present study was to determine the intracellular signaling pathways and 5-HT receptor subtypes involved in 5-HT-induced DMBS. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers. 5-HT receptor involvement in DMBS was inferred from pharmacological studies by using selective 5-HT receptor antagonists and agonists. The expression of 5-HT(4) receptor mRNA in duodenal mucosa and epithelial cells was analyzed by RT-PCR. cAMP-dependent signaling pathway inhibitors MDL-12330A, Rp-cAMP, and H-89 and Ca(2+)-dependent signaling pathway inhibitors verapamil and W-13 markedly reduced 5-HT-stimulated duodenal bicarbonate secretion and short-circuit current (I(sc)), whereas cGMP-dependent signaling pathway inhibitors NS-2028 and KT-5823 failed to alter these responses. Both SB-204070 and high-dose ICS-205930 (selective 5-HT(4) receptor antagonists) markedly inhibited 5-HT-stimulated bicarbonate secretion and I(sc), whereas methiothepine (5-HT(1) receptor antagonist), ketanserin (5-HT(2) receptor antagonist), and a low concentration of ICS-205930 (5-HT(3) receptor antagonist) had no effect. RS-67506 (partial 5-HT(4) receptor agonist) concentration-dependently increased bicarbonate secretion and I(sc), whereas 5-carboxamidotryptamine (5-HT(1) receptor agonist), alpha-methyl-5-HT (5-HT(2) receptor agonist), and phenylbiguanide (5-HT(3) receptor agonist) did not significantly increase bicarbonate secretion or I(sc). RT-PCR analysis confirmed the expression of 5-HT(4) receptor mRNA in murine duodenal mucosa and epithelial cells. These results demonstrate that 5-HT regulates DMBS via both cAMP- and Ca(2+)-dependent signaling pathways and 5-HT(4) receptors located in the duodenal mucosa and/or epithelial cells.
    [Abstract] [Full Text] [Related] [New Search]