These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B.
    Author: Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, Wang HG, Atadja P, Bhalla K.
    Journal: Mol Cancer Ther; 2003 Oct; 2(10):971-84. PubMed ID: 14578462.
    Abstract:
    Histone deacetylase inhibitors induce hyperacetylation of the amino-terminal lysine residues of the core nucleosomal histones, which results in chromatin remodeling and altered gene expression. Present studies demonstrate that exposure to a novel hydroxamic acid analogue histone deacetylase inhibitor, LAQ824, induced p21WAF1 and p27KIP1 and caused growth arrest and apoptosis of human breast cancer SKBR-3 and BT-474 cells that possess amplification and overexpression of Her-2/neu. Treatment with LAQ824 depleted the mRNA and protein levels of Her-2/neu-encoded Her-2, which was associated with attenuation of pAKT, c-Raf-1, and phosphorylated mitogen-activated protein kinase levels. LAQ824 also induced the acetylation of heat shock protein (hsp) 90, resulting in inhibition of its binding to ATP, which has been shown to impair the chaperone association of hsp 90 with its client proteins, Her-2, AKT, and c-Raf-1. Consistent with this, treatment with LAQ824 shifted the binding of Her-2 from hsp 90 to hsp 70, promoting proteasomal degradation of Her-2. Thus, LAQ824 depletes Her-2 through two mechanisms: attenuation of its mRNA levels and promotion of its degradation by the proteasome. Following LAQ824 treatment, the cell membrane association, autotyrosine phosphorylation, and colocalization of Her-2 with HER-3 also declined. Cotreatment with LAQ824 significantly increased trastuzumab-induced apoptosis of BT-474 and SKBR-3 cells. This was associated with greater attenuation of Her-2, c-Raf-1, and pAKT levels. LAQ824 also enhanced taxotere-induced, epothilone B-induced, and gemcitabine-induced apoptosis of BT-474 and SKBR-3 cells. These findings suggest that LAQ824 is active against human breast cancer cells and has the potential to improve the efficacy of trastuzumab, taxotere, gemcitabine, and epothilone B against breast cancer with Her-2/neuamplification.
    [Abstract] [Full Text] [Related] [New Search]