These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulatory phosphorylation of phosphoenolpyruvate carboxylase in protoplasts from Sorghum mesophyll cells and the role of pH and Ca2+ as possible components of the light-transduction pathway. Author: Pierre JN, Pacquit V, Vidal J, Gadal P. Journal: Eur J Biochem; 1992 Dec 01; 210(2):531-7. PubMed ID: 1459134. Abstract: The light-dependent phosphorylation of the photosynthetic phosphoenolpyruvate carboxylase (PyrPC) was shown to occur in protoplasts from Sorghum mesophyll cells. It was accompanied by an increase in PyrPC protein-serine-kinase activity and conferred the target-specific functional properties, i.e. an increase in Vmax and apparent Ki for L-malate, as previously found with the whole leaf. The light-dependent regulatory phosphorylation of PyrPC was (a) specifically promoted by the weak bases NH4Cl and methylamine (agents which increase cytosolic pH), but not by KNO3, (b) inhibited by the cytosolic protein-synthesis inhibitor, cycloheximide, thus confirming that protein turnover is a component of the signal-transduction cascade, as reported in [4], (c) found to moderately decrease in the presence of EGTA and to be strongly depressed when the Ca(2+)-selective ionophore A23187 was added to the incubation medium together with EGTA. Addition of Ca2+, but not of Mg2+, to the Ca(2+)-depleted protoplasts partially, but significantly, relieved the inhibition. Calcium deprivation apparently affected the in-situ light-activation of the PyrPC protein kinase. These data indicated that both Ca2+ and an increase in cytosolic pH are required for the induction of PyrPC protein kinase activity/PyrPC phosphorylation in illuminated protoplasts from Sorghum mesophyll cells.[Abstract] [Full Text] [Related] [New Search]