These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellular interactions with the extracellular matrix are coupled to diverse transmembrane signaling pathways.
    Author: Gimond C, Aumailley M.
    Journal: Exp Cell Res; 1992 Dec; 203(2):365-73. PubMed ID: 1459201.
    Abstract:
    Extracellular matrix (ECM) glycoproteins such as laminin, fibronectin, or collagen IV play a major role in cell behavior regulation. The molecular mechanisms taking place at the interface between the ECM and the cell surface are now rather well defined; however, very little is known about intracellular signals induced by these interactions. In order to get insights into the transduction pathways involved in cell-ECM interactions we have investigated the effects of several intracellular kinase inhibitors. Calmodulin-dependent kinase inhibitors, W-7 and sphingosine, have negative effects on cell-matrix interactions. They inhibit adhesion of several cell lines to laminin (IC50 = 4-10 microM), fibronectin and collagen IV (IC50 = 7-25 microM). The effects are immediate, reversible, and also cell specific, certain combinations of cell line-substrate being irresponsive to these inhibitors. In contrast, two inhibitors, H-7 and staurosporine, for which protein kinase C is a common target, increase two- to fourfold the attachment of HT1080, OVCAR-4, and B16F10 cells to laminin but not to fibronectin. Another inhibitor, HA-1004, known to inhibit protein kinase A at low concentrations, has an activating effect only at high concentration (> 200 microM) when it becomes an inhibitor of protein kinase C. These inhibitors are without effect on RuGli and Saos-2 cell adhesion on the three substrates. Altogether these results suggest that calmodulin-dependent kinases and protein kinase C could be separately involved in ECM-induced cellular responses. However, the effects of kinase inhibitors are substrate-specific and cell type-specific, suggesting that the intracellular signals induced by the extracellular matrix vary with the nature of integrin involved in signal transmission.
    [Abstract] [Full Text] [Related] [New Search]