These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of gliding movement by calcium in doublet microtubules on Tetrahymena ciliary dyneins in vitro.
    Author: Mori M, Miki-Noumura T.
    Journal: Exp Cell Res; 1992 Dec; 203(2):483-7. PubMed ID: 1459207.
    Abstract:
    We examined the effects of Ca ions on the gliding movement of Tetrahymena ciliary doublet microtubules induced by 14S or 22S dyneins in an in vitro motility assay system. The doublet microtubule appeared as circular-arc in solution, about 5 to 6 microns in length [1]. The doublet microtubules glided distal-end first on a 14S or 22S dynein-coated glass surface either clockwise or counterclockwise following the addition of ATP. The diameter of the circular path changed according to Ca concentration in the solution. Gliding velocity was from 1 to 5 microns/s. The addition of 0.1% Nonidet P-40 was necessary to induce the gliding movement on 22S dynein. This movement on 22S dynein was strongly inhibited above 0.5 mM ATP in the presence of 10(-9) M Ca, and at 0.05 to 1 mM ATP in the presence of 10(-3) M Ca. Many studies have indicated that Ca ions regulate ciliary movement [2-8] in which dyneins and doublet microtubule in the axoneme may play an essential role. The inhibition of the gliding movement of doublet microtubule on dyneins at appropriate concentrations of Ca and ATP as observed in this study may be the key for understanding Ca regulation of ciliary motility.
    [Abstract] [Full Text] [Related] [New Search]