These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The transcortical nature of the late reflex responses in human small hand muscle to digital nerve stimulation. Author: Palmer E, Ashby P. Journal: Exp Brain Res; 1992; 91(2):320-6. PubMed ID: 1459233. Abstract: The hypothesis that long-latency reflex activity in human small hand muscles in response to stimulation of digital nerves involves a transcortical pathway was tested by combining digital nerve stimulation and magnetic stimulation over the motor cortex in 12 studies on nine normal subjects. Postsynaptic events in human single first dorsal interosseous (FDI) motoneurones were derived from changes in the firing probability of voluntarily activated single motor units. Electromagnetic stimulation over the contralateral motor cortex resulted in a short-latency, brief facilitation of FDI motor units considered to be due to the activation of "fast" corticospinal neurones making monosynaptic projections to motoneurones. Stimulation of the digital nerves of the index finger produced a period of reduced firing probability (I1), a period of increased firing probability (E2) and a further period of reduced firing probability (I2) in FDI motor units. When the two stimuli were given separately and then together, timed so that the magnetic stimulus occurred at the predicted transit time of the E2 through the cortex, the facilitation of FDI motoneurones by the combined stimulation was often less than the algebraic sum of the facilitations from each stimulus alone. Thus, in contrast to the results of similar studies on the late response to muscle stretch, there is no confirmation that the E2 from digital nerve stimulation is due to a transcortical reflex.[Abstract] [Full Text] [Related] [New Search]