These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1). Author: Sully G, Dean JL, Wait R, Rawlinson L, Santalucia T, Saklatvala J, Clark AR. Journal: Biochem J; 2004 Feb 01; 377(Pt 3):629-39. PubMed ID: 14594446. Abstract: COX-2 (cyclo-oxygenase-2) mRNA is degraded rapidly in resting cells, but is stabilized by the mitogen-activated protein kinase p38 signalling pathway in response to pro-inflammatory stimuli. A conserved ARE (AU-rich element) of the COX-2 3' untranslated region, CR1 (conserved region 1), acts as a potent instability determinant, and mediates stabilization in response to p38 activation. A detailed structural and functional analysis of this element was performed in an attempt to identify RNA-binding proteins involved in the regulation of COX-2 mRNA stability. Destabilization of a beta-globin reporter mRNA was dependent upon two distinct AREs within CR1, each containing three copies of the sequence AUUUA. CR1 was shown to bind AUF-1 [ARE/poly(U)-binding/degradation factor-1] and/or AUF-2, HuR (Hu antigen R), TTP (tristetraprolin) and FBP1 (far-upstream-sequence-element-binding protein 1), yet these factors did not appear to account for the effects of CR1 upon mRNA stability. Mutant sequences were identified that were incapable of destabilizing a reporter mRNA, yet showed unimpaired binding of FBP1 and AUF-1 and/or -2. TTP was absent from the HeLa cell line used in this analysis. Finally, RNA interference experiments argued against a prominent role for HuR in the CR1-mediated regulation of mRNA stability. We conclude that at least one critical regulator of COX-2 mRNA stability is likely to remain unidentified at present.[Abstract] [Full Text] [Related] [New Search]