These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tetra-amino-acid tandem repeats are involved in HsdS complementation in type IC restriction-modification systems. Author: Adamczyk-Popławska M, Kondrzycka A, Urbanek K, Piekarowicz A. Journal: Microbiology (Reading); 2003 Nov; 149(Pt 11):3311-3319. PubMed ID: 14600243. Abstract: All known type I restriction and modification (R-M) systems of Escherichia coli and Salmonella enterica belong to one of four discrete families: type IA, IB, IC or ID. The classification of type I systems from a wide range of other genera is mainly based on complementation and molecular evidence derived from the comparison of the amino acid similarity of the corresponding subunits. This affiliation was seldom based on the strictest requirement for membership of a family, which depends on relatedness as demonstrated by complementation tests. This paper presents data indicating that the type I NgoAV R-M system from Neisseria gonorrhoeae, despite the very high identity of HsdM and HsdR subunits with members of the type IC family, does not show complementation with E. coli type IC R-M systems. Sequence analysis of the HsdS subunit of several different potential type IC R-M systems shows that the presence of different tetra-amino-acid sequence repeats, e.g. TAEL, LEAT, SEAL, TSEL, is characteristic for type IC R-M systems encoded by distantly related bacteria. The other regions of the HsdS subunits potentially responsible for subunit interaction are also different between a group of distantly related bacteria, but show high similarity within these bacteria. Complementation between the NgoAV R-M system and members of the EcoR124 R-M family can be restored by changing the tetra-amino-acid repeat within the HsdS subunit. The authors propose that the type IC family of R-M systems could consist of several complementation subgroups whose specificity would depend on differences in the conserved regions of the HsdS polypeptide.[Abstract] [Full Text] [Related] [New Search]