These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epidermal growth factor potentiates cholecystokinin/gastrin receptor-mediated Ca2+ release by activation of mitogen-activated protein kinases.
    Author: Olszewska-Pazdrak B, Ives KL, Park J, Townsend CM, Hellmich MR.
    Journal: J Biol Chem; 2004 Jan 16; 279(3):1853-60. PubMed ID: 14602717.
    Abstract:
    Small differences in amplitude, duration, and temporal patterns of change in the concentration of free intracellular Ca2+ ([Ca2+](i)) can profoundly affect cell physiology, altering programs of gene expression, cell proliferation, secretory activity, and cell survival. We report a novel mechanism for amplitude modulation of [Ca2+](i) that involves mitogen-activated protein kinase (MAPK). We show that epidermal growth factor (EGF) potentiates gastrin-(1-17) (G17)-stimulated Ca2+ release from intracellular Ca2+ stores through a MAPK-dependent pathway. G17 activation of the cholecystokinin/gastrin receptor (CCK(2)R), a G protein-coupled receptor, stimulates release of Ca2+ from inositol 1,4,5-triphosphate-sensitive Ca2+ stores. Pretreating rat intestinal epithelial cells expressing CCK(2)R with EGF increased the level of G17-stimulated Ca2+ release from intracellular stores. The stimulatory effect of EGF on CCK(2)R-mediated Ca2+ release requires activation of the MAPK kinase (MEK)1,2/extracellular signal-regulated kinase (ERK)1,2 pathway. Inhibition of the MEK1,2/ERK1,2 pathway by either serum starvation or treatment with selective MEK1,2 inhibitors PD98059 and U0126 or expression of a dominant-negative mutant form of MEK1 decreased the amplitude of the G17-stimulated Ca2+ release response. Activation of the MEK1,2/ERK1,2 pathway either by pretreating cells with EGF or by expression of constitutively active K-ras (K-rasV12G) or MEK1 (MEK1*) increased the amplitude of G17-stimulated Ca2+ release. Although EGF, MEK1*, and K-rasV12G activated the MEK1,2/ERK1,2 pathway, they did not increase [Ca2+](i) in the absence of G17. These data demonstrate that the activation state of the MEK1,2/ERK1,2 pathway can modulate the amplitude of the CCK(2)R-mediated Ca2+ release response and identify a novel mechanism for cross-talk between EGF receptor- and CCK(2)R-regulated signaling pathways.
    [Abstract] [Full Text] [Related] [New Search]