These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Author: Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L. Journal: Exp Physiol; 2003 Nov; 88(6):699-710. PubMed ID: 14603368. Abstract: L-arginine transport is mediated by the cationic/neutral amino acid transport system y+L and cationic amino acid transporters y+/CATs in human umbilical vein endothelial cells (HUVECs). System y+/CATs activity may be rate-limiting for nitric oxide (NO) synthesis, but no reports have demonstrated system y+L involvement in NO synthesis in endothelium. We investigated the role of system y+L in NO synthesis in HUVECs. Transport of 1.5 microM L-arginine was inhibited (P < 0.05) by L-lysine (K(i), 1.4 micro M), L-leucine (K(i), 1.8 micro M) and L-phenylalanine (K(i), 4.1 microM), but was unaltered (P > 0.05) by L-alanine or L-cysteine. The system y+/CATs inhibitor, N-ethylmaleimide (NEM), did not alter 1.5 microM L-arginine transport, but inhibited (92 +/- 3 %) 100 microM L-arginine transport. L-arginine transport in the presence of NEM was saturable (V(max), 0.37 +/- 0.02 pmol (microg protein)(-1) min(-1); K(m), 1.5 +/- 0.3 microM) and competitively inhibited by L-leucine in the presence of Na+ (V(max), 0.49 +/- 0.06 pmol (microg protein)(-1) min(-1); K(m), 6.5 +/- 0.9 microM). HUVECs express SLC3A2/4F2hc, SLC7A7/4F2-lc2 and SLC7A6/4F2-lc3 genes encoding for the high-affinity transport system y+L. N(G)-Nitro-L-arginine methyl ester and L-leucine, but not NEM, inhibited NO synthesis in medium containing 1.5 microM L-arginine. Cells exposed to 25 mM D-glucose (24 h) exhibited reduced system y+L activity (V(max), 0.15 +/- 0.008 pmol (microg protein)(-1) min(-1); K(m), 1.4 +/- 0.3 microM) and NO synthesis. However, 25 mM D-glucose increased NO synthesis and L-arginine transport via system y+. Thus, L-arginine transport through system y+L plays a role in NO synthesis, which could be a determining factor in pathological conditions where the endothelial L-arginine-NO pathway is altered, such as in diabetes mellitus.[Abstract] [Full Text] [Related] [New Search]