These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol. Author: Hung H. Journal: J Cell Physiol; 2004 Feb; 198(2):197-208. PubMed ID: 14603522. Abstract: Estrogens are mitogenic for estrogen receptor (ER)-positive breast cancer cells. Current treatment of ER-positive breast tumors is directed towards interruption of estrogen activity. We report that treatment of ER-positive breast cancer cells with kaempferol resulted in a time- and dose-dependent decrease in cell number. The concentration required to produce 50% growth inhibition at 48 h was approximately 35.0 and 70.0 microM for ER-positive and ER-negative breast cancer cells, respectively. For MCF-7 cells, a reduction in the ER-alpha mRNA equivalent to 50, 12, 10% of controls was observed 24 h after treatment with 17.5, 35.0, and 70.0 microM of kaempferol, respectively. Concomitantly, these treatments led to a 58, 80, and 85% decrease in ER-alpha protein. The inhibitory effect of kaempferol on ER-alpha levels was seen as early as 6 h post-treatment. Kaempferol treatment also led in a dose-dependent decrease in the expression of progesterone receptor (PgR), cyclin D1, and insulin receptor substrate 1 (IRS-1). Immunocytochemical study revealed that ER-alpha protein in kaempferol-treated MCF-7 cells formed an aggregation in the nuclei. Kaempferol also induced degradation of ER-alpha by a different pathway than that were observed for the antiestrogen ICI 182,780 and estradiol. Estradiol-induced MCF-7 cell proliferation and expression of the estrogen-responsive-element-reporter gene activity were abolished in cells co-treated with kaempferol. These findings suggest that modulation of ER-alpha expression and function by kaempferol may be, in part, responsible for its anti-proliferative effects seen in in vitro.[Abstract] [Full Text] [Related] [New Search]