These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluoxetine-induced changes in body weight and 5-HT1A receptor-mediated hormone secretion in rats on a tryptophan-deficient diet.
    Author: D'Souza DN, Zhang Y, Garcia F, Battaglia G, Van de Kar LD.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2004 Feb; 286(2):R390-7. PubMed ID: 14604841.
    Abstract:
    Tryptophan depleting protocols are commonly used to study the role of serotonin in mood disorders. The present study examined the impact of a tryptophan-deficient diet and fluoxetine on the serotonergic regulation of neuroendocrine function and body weight. We hypothesized that the regulation of postsynaptic 5-HT1A receptors is dependent on the levels of 5-HT in the synapse. Rats on a control or a tryptophan-deficient diet received daily injections of saline or fluoxetine (5 or 10 mg.kg-1.day-1 ip) from day 7 to day 21. The tryptophan-deficient diet produced a 41% reduction in the level of 5-HT but no change in the density of [3H]paroxetine-labeled 5-HT transporters. Treatment with fluoxetine inhibited the gain in weight in rats maintained on the control diet. The tryptophan-deficient diet produced a significant loss in body weight that was not significantly altered by treatment with fluoxetine. Treatment with fluoxetine produced a dose-dependent desensitization of hormone responses to injection of the 5-HT1A receptor agonist (+/-)8-hydroxy-2-(di-n-propylamino)tetralin ((+/-)8-OH-DPAT). The tryptophan-deficient diet produced an increase in the basal levels of corticosterone but did not alter the basal levels of ACTH or oxytocin. Also, this diet inhibited the magnitude of 8-OH-DPAT-induced increase in plasma levels of ACTH and oxytocin but did not impair the ability of fluoxetine to desensitize the 5-HT1A receptor-mediated increase in plasma hormones. These data suggest that a reserve of 5-HT enables fluoxetine to desensitize postsynaptic 5-HT1A receptors in the hypothalamus. In conclusion, the profound physiological changes induced by tryptophan depletion may complicate the interpretation of studies using this experimental approach.
    [Abstract] [Full Text] [Related] [New Search]