These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The dual-bootstrap iterative closest point algorithm with application to retinal image registration. Author: Stewart CV, Tsai CL, Roysam B. Journal: IEEE Trans Med Imaging; 2003 Nov; 22(11):1379-94. PubMed ID: 14606672. Abstract: Motivated by the problem of retinal image registration, this paper introduces and analyzes a new registration algorithm called Dual-Bootstrap Iterative Closest Point (Dual-Bootstrap ICP). The approach is to start from one or more initial, low-order estimates that are only accurate in small image regions, called bootstrap regions. In each bootstrap region, the algorithm iteratively: 1) refines the transformation estimate using constraints only from within the bootstrap region; 2) expands the bootstrap region; and 3) tests to see if a higher order transformation model can be used, stopping when the region expands to cover the overlap between images. Steps 1): and 3), the bootstrap steps, are governed by the covariance matrix of the estimated transformation. Estimation refinement [Step 2)] uses a novel robust version of the ICP algorithm. In registering retinal image pairs, Dual-Bootstrap ICP is initialized by automatically matching individual vascular landmarks, and it aligns images based on detected blood vessel centerlines. The resulting quadratic transformations are accurate to less than a pixel. On tests involving approximately 6000 image pairs, it successfully registered 99.5% of the pairs containing at least one common landmark, and 100% of the pairs containing at least one common landmark and at least 35% image overlap.[Abstract] [Full Text] [Related] [New Search]