These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers.
    Author: Temenoff JS, Shin H, Conway DE, Engel PS, Mikos AG.
    Journal: Biomacromolecules; 2003; 4(6):1605-13. PubMed ID: 14606886.
    Abstract:
    A novel hydrogel system based on oligo(poly(ethylene glycol) fumarate) (OPF) is currently being investigated as an injectable carrier for marrow stromal cells (MSCs) for orthopedic tissue engineering applications. This hydrogel is cross-linked using the redox radical initiators ammonium persulfate (APS) and ascorbic acid (AA). In this study, two different persulfate oxidizing agents (APS and sodium persulfate (NaPS)) with three reducing agents derived from ascorbic acid (AA, sodium ascorbate (Asc), and magnesium ascorbate-2-phosphate (Asc-2)) and their combinations were examined to determine the relationship between pH, exposure time, and cytotoxicity for rat MSCs. In addition, gelation times for specific combinations were determined using rheometry. pH and cell viability data after 2 h for combinations ranging from 10 to 500 mM in each reagent showed that there was a smaller pH change and a corresponding higher viability at lower concentrations, regardless of the reagents used. At 10 mM, there was less than a 1.5 unit drop in pH and greater than 90% viability for all initiator combinations examined. However, MSC viability was significantly reduced with concentrations of 100 mM and higher of the initiator combinations. At 100 mM, exposure to NaPS/Asc-2 resulted in significantly more live cells than exposure to APS/AA or NaPS/Asc, but at this concentration, NaPS/Asc-2 exhibited significantly longer OPF gelation onset times than APS/AA. At all combination concentrations, exposure time (10 min vs 2 h) did not significantly affect MSC viability. These data indicate that final pH and/or radical formation have a large impact on MSC viability and that multiple, intertwined testing procedures are required for identification of appropriate initiators for cell encapsulation applications.
    [Abstract] [Full Text] [Related] [New Search]