These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Correction of cardiac output obtained by Modelflow from finger pulse pressure profiles with a respiratory method in humans. Author: Tam E, Azabji Kenfack M, Cautero M, Lador F, Antonutto G, di Prampero PE, Ferretti G, Capelli C. Journal: Clin Sci (Lond); 2004 Apr; 106(4):371-6. PubMed ID: 14606953. Abstract: The beat-by-beat non-invasive assessment of cardiac output (Q litre x min(-1)) based on the arterial pulse pressure analysis called Modelflow can be a very useful tool for quantifying the cardiovascular adjustments occurring in exercising humans. Q was measured in nine young subjects at rest and during steady-state cycling exercise performed at 50, 100, 150 and 200 W by using Modelflow applied to the Portapres non-invasive pulse wave (Q(Modelflow)) and by means of the open-circuit acetylene uptake (Q(C2H2)). Q values were correlated linearly ( r = 0.784), but Bland-Altman analysis revealed that mean Q(Modelflow) - Q(C2H2) difference (bias) was equal to 1.83 litre x min(-1) with an S.D. (precision) of 4.11 litre x min(-1), and 95% limits of agreement were relatively large, i.e. from -6.23 to +9.89 litre x min(-1). Q(Modelflow) values were then multiplied by individual calibrating factors obtained by dividing Q(C2H2) by Q(Modelflow) for each subject measured at 150 W to obtain corrected Q(Modelflow) (Qcorrected) values. Qcorrected values were compared with the corresponding Q(C2H2) values, with values at 150 W ignored. Data were correlated linearly ( r = 0.931) and were not significantly different. The bias and precision were found to be 0.24 litre x min(-1) and 3.48 litre x min(-1) respectively, and 95% limits of agreement ranged from -6.58 to +7.05 litre x min(-1). In conclusion, after correction by an independent method, Modelflow was found to be a reliable and accurate procedure for measuring Q in humans at rest and exercise, and it can be proposed for routine purposes.[Abstract] [Full Text] [Related] [New Search]